Warum Big Data nicht ohne Menschen funktioniert.
Ersetzen Big Data und künstliche Intelligenz den Menschen? Nein, sagen die Mitarbeiter im Center of Analytics. Das Team baut die Analyse-Plattform, die das Geschäft aller EOS Unternehmen grundlegend ändern wird – und fördert eine datengetriebene Denkweise im gesamten Konzern.
Als Joachim Göller im Dezember 2017 bei EOS anfing, lautete sein Auftrag: Die Unternehmensgruppe mit 25 Landesgesellschaften in ein datengetriebenes Unternehmen verwandeln. „Mir wurde schnell klar: Um diesen Sprung nach vorn zu machen, müssen wir erst einen Schritt zurückgehen“, sagt der Leiter des Center of Analytics (CoA).
EOS ist europaweit im Forderungsmanagement aktiv, an Standorten wie Polen, Spanien und Bosnien; aber auch in Russland und jenseits des Atlantiks in Kanada und den USA. Was die Größe der Aufgabe verdeutlicht, die Göller und das CoA bewältigen: Das Team entwickelt nicht nur eine Business-Intelligence-Plattform für eine Unternehmensgruppe, die 20.000 Kunden bedient. Es muss diese Technologie und den dahinter stehenden Mindset in der Arbeitskultur von 55 Tochterfirmen verankern.
Die Plattform muss zu verschiedenen Inkassosystemen passen.
„Wir wollen den effizientesten Weg finden, Daten aus den EOS Ländern auf die Analytics-Plattform zu übertragen, während wir alle EU-Datenschutzregeln befolgen“, sagt Witte. „So können wir Prognosemodelle entwerfen und künstliche Intelligenz nutzen, um Erkenntnisse für das operative Geschäft zu liefern – und so Wettbewerbsvorteile schaffen." Wofür im Center of Analytics Menschen mit vielen Berufsprofilen arbeiten. „Wir suchen immer nach neuen Talenten mit einem technischen Fokus", sagt Team-Manager Patrick Witte, zum Beispiel Softwareentwickler und Plattform-Architekten.
Global denken, lokal handeln.
Hier kommt die zweite Gruppe von Fachleuten im CoA ins Spiel: Analytische Berater und Data Scientists, die meisten von ihnen mit methodischen Kenntnissen, darunter Mathematiker und Volkswirte. „Um sicherzustellen, dass die geschäftlichen Anforderungen erkannt und mit dem richtigen analytischen Ansatz gelöst werden, bedarf es umfassender Fähigkeiten“, sagt Witte.
Witte selbst hat an der Universität Dortmund Statistik studiert und arbeitete später für ein internationales Business Analytics-Unternehmen, bevor er 2012 zu EOS kam. „Die nötigen Beratungskompetenzen habe ich hier bei EOS erworben“, sagt er. Aber es gibt keinen Standard-Karrierepfad – im CoA-Team trifft man auch Menschen, die im Finanzsektor eher selten zu finden sind: „Wir haben auch eine theoretische Physikerin, die mehrere Jahre als Beraterin gearbeitet hat, bevor sie zu uns kam.“
Können Finanzdienstleistungen agil werden?
Das CoA arbeitet tatsächlich ähnlich wie ein Start-up: Die Analyse-Plattform wird bei einer Handvoll Referenzprojekten gelauncht, dann im laufenden Betrieb hochskaliert und weitere Partner über eine API angebunden. Doch ein wichtiger Unterschied zum klassischen Start-up bleibt: Das CoA-Team muss keine Investoren zufriedenstellen– bei EOS dreht sich alles um ein langfristiges Engagement für die Kunden. Und darum, einen datengesteuerten Ansatz für den Inkasso-Prozess anzuwenden.
In Deutschland ist der Change-Prozess schon in vollem Gang, auf der vom CoA entwickelten Inkasso-Software FX werden die ersten Fälle verwaltet. Erfolgsgeschichten wie diese helfen, Entscheider in der Organisation vom datengetriebenen Ansatz zu überzeugen, glaubt Göller: „Man muss Fans gewinnen, die diesen Prozess vorantreiben und für den Ansatz werben. Jeder Use Case muss zu einem direkten Nutzen für den Kunden führen.“
Die Befürchtung, maschinelles Lernen (Machine Learning) und künstliche Intelligenz könnten die Menschen ersetzen, die mit Schuldnern am Telefon arbeiten, teilt Witte nicht. „Wir brauchen unsere Experten, um die richtigen Fragen zu stellen, die das Datenanalyse-System beantworten soll.“ Er sieht Machine Learning und künstliche Intelligenz als clevere Assistenten, die dabei helfen, sich besser auf den Kunden einzustellen und zu entscheiden, welcher Schritt als nächstes eingeleitet wird, um die Quote der Rückzahlungen zu steigern.
Mithilfe von Datenanalyse den Kunden persönlicher ansprechen.
„Die Plattform ist viel effizienter bei der Erstellung einer Echtzeit-Prognose“, sagt Witte. „In der Vergangenheit basierte unsere Entscheidungsfindung vielleicht auf zwei oder drei Schlüsselinformationen über einen Kunden. Aber es gibt viel mehr Daten, die uns helfen können, Kunden differenzierter zu betrachten.“ Es sind die einfachen Fälle, die künftig automatisch abgewickelt werden könnten – die Mitarbeiter können sich dann mehr auf komplexere Fälle konzentrieren, bei denen Insolvenzen oder gerichtliche Inkassoverfahren im Raum stehen.
Big-Data-Lösungen müssen von Mitarbeitern gesteuert werden.
Bei allem Effizienzgewinn: „Sich auf Teufel komm raus auf Algorithmen zu verlassen, würde gegen unsere ethischen Standards verstoßen“, so Göller. Zum Beispiel würde EOS niemals einen Algorithmus zulassen, der die Kredithistorie eines Kunden danach bewertet, auf welche Herkunft sein Nachname hindeutet. „Bei uns werden immer Menschen festlegen, in welchen Grenzen die Technik arbeitet.“